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Abstract

Lead zirconate titanate (Pb(Zr,Ti)O3, PZT) is a favoured piezoelectric material for MEMS actuators because of its high piezoelectric coefficients and large coupling factors. To date, in MEMS applications,
PZT has been configured as a unimorph with silicon providing the passive structural layers for a range of devices, including accelerometers, linked-cantilever filters, and FBARS. The same range of
applications should be possible with diamond, namely NCD. NCD offers many attractive properties as a structural material with highly linear elastic properties up to high temperatures, high thermal
conductivity and perhaps most important for high speed / high duty MEMS applications high stiffness at low density.

To obtain the perovskite structure of PZT with high piezoelectric activity, thin films must be deposited or annealed at high temperatures, somewhere in the range, 530 C to 650 C, de pending on the PZT
composition. To deposit PZT on top of NCD, consideration must be given to avoiding etching of the diamond in oxygen atmosphere at these high temperatures. A crucial issue has therefore been the
development of good adhesion layers between the PZT and diamond film. In this paper we will report the deposition of sol gel derived PZT onto NCD and subsequent annealing. The diamond films had
been grown on silicon by MPCVD. An SEM cross-sectional analysis of the diamond/PZT interface reveal a dense polycrystalline microstructure.

In addition, fabrication processes for incorporating these films into NCD-MEMS devices are demonstrated.
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Fabrication technology of cantilever structure
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approximately doubled as compared to PZT on Si

[ based on the ref.: J. Zeng, L. Wang, J. Gao, Z. Song, X. Zhu, C. Lin, L. Hou, E. Liu, J. Crystal Growth 197 (1999) 874 |

Conclusion

material system theoretically analysed in terms of thermal stress (concerning deposition temperatures), cantilever resonance frequency, cantilever deflection and cantilever tip force

PZT on NCD deposited by sol-gel process
test structures for determination of thermal mismatch of PZT and NCD fabricated
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fabrication technology for manufacture of cantilever actuators developed

mm=)>  Toolbox for development of unimorph cantilever switches an d mechanical resonators developed



